
zk-creds
Flexible Anonymous Credentials
from zkSNARKs and Existing
Identity Infrastructure

Michael Rosenberg

University of Maryland
micro@umd.edu

Jacob White

Purdue University
white570@purdue.edu

Christina Garman

Purdue University
clg@purdue.edu

Ian Miers

University of Maryland
imiers@umd.edu

https://ia.cr/2022/878
https://github.com/rozbb/zkcreds-rs 1(Adapted from IEEE S&P 2023)

1. Prove something about yourself
("I'm over 18")

2. … without revealing anything else
(name, address, etc.)

2

Anonymous Credentials

Anonymous Credentials

Example 1
Serving age-restricted videos using photo
ID or credit card (Utah, Louisiana, EU laws)

Example 2
Preventing spam / DoS using
PrivacyPass-like tokens

3

Anonymous Credentials

Many anonymous credential schemes exist
[Cha85, CL01, CL03, CL04, CHK+06, BCKL08, CG08, BL13, GGM14,
CDHK15, SAB+19]

4

But each:
•Requires the govt. to issue exotic new
credentials digitally
•Requires cryptographers to design a
custom protocol for each new use case

zk-creds
A practical system must:

zk-creds uses SNARKs
to get all of these 5

1. Support existing identity
documents

2. Not require new trusted
parties for issuance

3. Be easily programmable
for new use cases

Background: zkSNARKs
Zero-Knowledge Succinct Non-interactive
ARgument of Knowledge:
•ZK. Can prove "I know x such that
P(x, aux)" where aux is public
•Succinct. That proof π is the same size
no matter how large or complex P is
•Non-interactive. Verify(π, aux) is
constant time*

LinkG16 extends
Groth16 zkSNARKs,
letting us package
together and reuse
multiple proofs:

New

6

π1 π2 π3

π'Example: Unlinkable signatures
 "I know σ such that SigVerifpk(σ, m)"

Supporting existing identity documents
Showing (e.g.) age requires govt. ID
or other source of identity.

Existing creds schemes assume
that the govt. or other trusted third
party will issue your cred.

Observation: some govt. IDs have
non-anonymous digital IDs inside
an RFID chip.

Furthermore, these IDs are signed
by the govt. itself

Idea
Let's bootstrap an
anonymous system
on top of this
non-anonymous one!

7

Use zero-knowledge proofs (zkSNARKs) to:
• Prove an ID is signed by the govt.
• Prove other details to access service

π

"Doc X is signed by the
US State Dept. pubkey
AND X.age > 18…”

8

Supporting existing identity documents

Privacy ✅ Authenticity ✅

Use zero-knowledge proofs (zkSNARKs) to:
• Prove an ID is signed by the govt.
• Prove other details to access service

π

"Doc X is signed by the
US State Dept. pubkey
AND X.age > 18…”

9

Supporting existing identity documents

Privacy ✅ Authenticity ✅
“… AND I completed a
CAPTCHA” ❌

Problem
Credentials often
need more info
than a single
document

1. Support existing identity
documents

2. Not require new trusted
parties for issuance

3. Be easily programmable
for new use cases

zk-creds
A practical system must:

10

π

Request is
sue

Show

Anonymous credentials
The usual flow

Iss
ue

"I know a signature
on a doc such that..."

11

[[[[[[[[

Problem
We want fewer,
not more, trusted
third parties

π
Request is

sue

Show

Anonymous credentials
The zk-creds flow

"I know a leaf in this
tree such that..."

12

Issuance list
(Merkle Tree(s))

What does this
buy us?

To request issuance in zk-creds, the
user provides:

zk-creds
When to issue, when to reject

To get an issued credential, a user
might need to give extra information
to the issuer. We call this
zk-supporting documentation

π
[[[

13

1. A credential
2. zk-supporting docs
3. A proof of correctness

With a public list: we can now see what’s
on the list, and use zk-supporting
documents to justify why it was issued

Issuance is now publicly auditable

Transparent issuance
Previously: issuer could privately sign
whatever they wanted

14

Issuance list

π π
Bonus: more ways to issue (threshold
permissions, Byzantine consensus,
blockchain, etc.)

Transparent issuance

Credential’s attributes are still private

Issuance happens on commitments to
ID, not ID themselves:

15

[[

commit

Issuance list

[

π

[

π

Zero-knowledge proofs during
issuance and show means nothing
extra is revealed across proofs

Flexible issuance

Another bonus: the proofs can be
anything! No longer need to sign
attributes in a bespoke manner

Can combine proof over cred and other
information to argue for issuance

16

Issuance list

π π

1. Support existing identity
documents

2. Not require new trusted
parties for issuance

3. Be easily programmable
for new use cases

zk-creds
A practical system must:

17

Extending flexibility

π can be an arbitrary statement
Show

zokrates

arkworks

18

Huge ecosystem for SNARKs – many
libraries for writing R1CS circuits,
PLONK circuits, etc. for many
SNARK protocols

Allows developers to write complex
statements without being experts
in cryptography

Gadgets:

Expiry The credential hasn't expired

Linkable Show I'm the same person as before

Rate limiting I haven't used my credential too many
times

Clone resistance If I reused my credential too many
times, you can deanonymize me

We build all these with just a few lines
of arkworks code.

Optimization
A new cryptographic
technique that lets
you reuse and link
gadgets together

πbul πgadg1πgadg2 πgadg3

19

Extending flexibility

Gadgets:

20

Extending flexibility

We build all these with just a few lines of
arkworks code.

Expiry: The credential hasn't expired

Linkable Show: I'm the same person as before

Rate limiting: I haven't used my credential too
many times

Clone resistance: If I reused my credential too
many times, you can deanonymize me

Expiry: The credential hasn't expired
Proof (gadget) π:

1. takes date as public input, today

2. opens credential’s commitment to
expiry date attribute, e

3. checks that e > today

21

Extending flexibility

Linkable Show: I'm the same person as before
Proof (gadget) π:

1. takes context of persistent interaction
as public input, ctx

2. opens credential’s commitment to
pseudonym key, nk

3. generates PRFnk(ctx) and checks against
expected pseudonym

22

Extending flexibility

Proof (gadget) π:

1. takes rate limit (N, epoch) and
rate count ctr as public inputs

2. opens credential’s commitment to
rate key, rk

3. generates token PRFrk(epoch || ctr) and checks
that the token is unique wrt epoch and ctr < N

Rate limiting: I haven't used my credential too many times

23

Extending flexibility

Proof (gadget) π is same as rate-limit gadget, with two
differences:
1. verifier sends unique nonce

with each credential show
2. generates two tokens:

tok1 = PRFrk(epoch || ctr)
tok2 = id + H(nonce) * PRFrk(epoch || ctr)

Reusing ctr with new nonce makes tok1 repeat: solve for id

Clone resistance: If I reused my credential too many times, you
can deanonymize me (Camenisch, Hohenberger et al., CCS 2006)

24

Extending flexibility

Optimization
A new cryptographic
technique (LinkG16)
lets you reuse and
link gadgets together

πsho

w

πgadg1πgadg2 πgadg3

Proofs need to be re-computed when its
private inputs change, but not public inputs.

Many useful credential proof gadgets only
change public inputs across shows, even for
a different show statement.

By binding shared public inputs across
Groth16 proofs, we can link reused gadget
proofs into a single LinkG16 show proof.

Extending flexibility

π'

zk-creds
A practical system must:

1. Support existing identity
documents

2. Not require new trusted
parties for issuance

3. Be easily programmable
for new use cases

26

Experiments
Microbenchmarks Benchmarked
list membership + 1 gadget
Case study Wrote an Android app that
dumps passports. Wrote a SNARK for
US passport validity. Benchmarked
proofs.

Show < 300ms
Proofs ~1KiB
Verify < 10ms

27

Takeaway
Fast enough to run on your phone in
the real world!

More show statements. Prove you live
in a specific voting district. Even if
expensive, you only prove once.

Extensions & future work
More identity sources. No limits on
what we can use. DKIM to prove email
ownership. DECO/TLSNotary to prove
web account ownership.

28

Faster primitives. New ZKP-based
crypto is coming out all the time!

Conclusion

We built a fast, flexible anonymous
credentials scheme.

Any part can be swapped out (hash,
proof system, issuance list/signatures)

This is all possible due to general
purpose zkSNARKs

Show < 300ms
Proofs ~1KiB
Verify < 10ms

29

Support for existing identity documents
No new trusted parties issuing credentials
Customizable w/o needing cryptographers

zk-creds
Flexible Anonymous Credentials from
zkSNARKs and Existing Identity
Infrastructure

Jacob White
white570@purdue.edu

https://ia.cr/2022/878
https://github.com/rozbb/zkcreds-rs

Q&A

Images from flaticon.com
30

Backups

LinkG16

text 32

Background: Merkle Trees
An accumulator data structure that recursively applies a
cryptographic hash function, H, to a list of values. The tree’s
root summarizes the state of the list. Membership proofs in a
Merkle tree are the nodes to re-compute the root:
Example. Merkle path proving
membership of C2 in MT:

x := (h01 = H(C2), h00 , h1), aux := r

Verify: r = H(H(h00||h01)||h1)

33

r := H(h0 || h1)

h0 := H(h00 || h01) h1 := H(h10 || h11)

h11 := H(C4)h10 := H(C3)h01 := H(C2)h00 := H(C1)

C1 C2 C3 C4

Background: Merkle Trees
Zero-Knowledge proofs of membership in the list simply hide
the leaf being verified wrt the current state of the list (root):

Example. Merkle path proving
membership of C2 in MT:

x := (h01 = H(C2), h00 , h1), aux := r

Verify: r = H(H(h00||h01)||h1)

r := H(h0 || h1)

h0 := H(h00 || h01) h1 := H(h10 || h11)

h11 := H(C4)h10 := H(C3)h01 := H(C2)h00 := H(C1)

C1 C2 C3 C4 34

Background: Merkle Trees
Problem. Any credential in the Merkle tree, say C3 , that
changes (e.g. new cred or in-place revocation) will change the
straight-line path from C3 to r, → Merkle path up to r + the
corresponding ZK proof for all other credentials Cj≠C3:
Example. Merkle path proving
membership of C2 in MT is now:

x := (h01 = H(C2), h00 , h’1), aux :=
r’

Verify: r’ = H(H(h00||h01)||h’1)

r’ := H(h0 || h’1
)

h0 := H(h00 || h01) h’1 := H(h’10 || h11)

h11 := H(C4)h’10 := H(C3)h01 := H(C2)h00 := H(C1)

C1 C2 C’3 C4 35

Contribution: Merkle Forests
Solution. Have each zk-creds “issuer” manage their own
individual Merkle trees to reduce the rate of Merkle path
changes:

36

r(i) := H(h0 || h1)

h0 := H(h00 || h01) h1:= H(h10 || h11)

h11 := H(C4)h10 := H(C3)h01 := H(C2)h00 := H(C1)

C1 C2 C3 C4

r(1), r(2), … …, r(n-1), r(n)

Contribution: Merkle Forests
Solution. Novel optimizations to:
1) reduce rate of change to Merkle path / membership proof;
2) make it easier for users & ver. to use frontiers to sync MT;
3) eliminate leaks about the credential updating its proof.
Assuming credentials added left-to-right and unchanging…

37

Terminology

Credential User Service
Provider

Issuer

38

